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Summary of Accomplishments/New Findings 

This AFOSR grant has emphasized homogenous molecular models to provide mechanistic 
insights into the operation of water splitting catalysts. Highlights of the molecular work 
include: 

1. Measurement of their EPR spectra of Co4O4 cubanes and comparison these spectra 
to those of the authentic Co–OEC catalysts, This work has allowed us to ascertain the 
delocalization of the Co(IV) holes in a cluster species possessing a structure that is 
akin to the Co–OECs. This work has been pivotal in providing an understanding of 
the pre-catalytic state, and providing a framework in which to develop a rational 
mechanism for O–O bond formation by the Co–OEC catalysts. 

2. A penetrating study of Co3+|Co4+ self-exchange kinetics of Co4O4 cubanes and a 
detailed understanding of their mechanism of proton-coupled electron transfer 
(PCET). This work has (i) modeled PCET activation features of the Co–OEC catalysts 
and (ii) provided an understanding of how hole transfer propagates through films of 
the active Co–OEC catalysts.  

3. A fundamental understanding of Co–OEC catalyst activity. This latter insight led 
directly to the realization of highly active catalysts films. Moreover, knowledge of 
the mechanism was needed to construct the artificial leaf described in (7). 

4. The examination of Co2+|Co3+ self-exchange in a faithful structural molecular analog 
of the 7 atom cobalt cluster, thus allowing us, together with (2), to define the 
electron transfer kinetics of the complete Co(II)-Co(III)-Co(IV) cycle of the Co–OEC 
catalysts using molecular analogs of the catalyst . 

The other major advance of this AFOSR program was the integration of the Co-Ni|Pi-Bi 
catalysts with Si and the creation of the artificial leaf. Highlights of AFOSR work during the 
previous funding cycle include: 

5. Methods for electro- and photo- depositing the Co–OEC catalyst onto crystalline-
silicon (c-Si) and amorphous-silicon (a-Si). 

6. Characterization of OER reactivity driven by single junction c-Si.  

7. Characterization of OER reactivity driven by a triple junction a-Si solar cell and the 
construction of an artificial leaf composed of earth abundant materials. The leaf 
works under simple conditions (out of any container of any type of water source 
under ambient conditions). 

8. The development of a new OER Ni–OEC catalyst that has Tafel slope that is 
optimized to the peak performance of Si PV materials near the thermodynamic 
potential of water splitting. 

 



1. Objectives 

Molecular catalysts were developed to provide insights into the function of heterogeneous, 
thin film, water-splitting catalyst, Co–OEC and Ni–OEC. The molecular systems provide a 
means of interrogating intimate details, often inaccessible in heterogeneous materials, of 
these kinetically demanding chemical transformations. These studies are necessary to 
understand the processes of OER at its most fundamental level and to provide a framework 
for the rational design of more active OEC systems. On the foundation of this mechanistic 
understanding, catalyst integration with silicon was sought to create the artificial leaf. 

2. Findings 

2.1. A Structural Molecular Model of Co–OEC Catalysts 

The CoPi catalyst is a functional and related structural model of PSII–OEC. Shown in Figure 
1 are the structures of the PSII–OEC1 and the core structure of CoPi as deduced from X-ray 
absorption spectroscopy.2,3 Both PSII–OEC and CoPi have a partial cubane structure. In 
OEC, the cube is completed with a Ca2+ ion; though the alkali metal ions for CoPi have not 
been located, they likely reside on the three-fold oxygen triangle to complete the cube 
structure, as is the case for cobaltates.4 As highlighted in Figure 1, CoPi is the corner-
sharing head-to-tail dimer of PSII–OEC. The metal-metal (d = 2.8 Å) and metal-oxo (d = 1.9 
Å) distances in CoPi and PSII–OEC are similar. A view of the dicubane structure rotated by 
45° is also shown in Figure 1. In this view, it is easier to see that CoPi consists of edge-
sharing CoO6 octahedron, which is the basic building block of alkali metal cobaltates.5 The 
edge Co atoms of the cluster are terminated by the phosphate ions, which have been shown 
to be exchangeable.  

The 7-atom molecular cluster may be stabilized by 2-methoxy[(methylimino)methyl]-
phenol (HL), 1.6 This cluster, which is shown in Figure 2, has the precise Co-oxo core of 

                                                           
1  “Crystal structure of the oxygen-evolving complex of photosystem II.” Barber, J. Inorg. Chem. 2008, 47, 

1700. 
2  “Cobalt-oxo core of a water-oxidizing catalyst film.” Risch, M.; Khare, V.; Zaharieva, I.; Gerencser, L.; 

Chernev, P.; Dau, H. J. Am. Chem. Soc. 2009, 131, 6936. 
3  “Structure and valency of a cobalt phosphate water oxidation catalyst determined by in situ x-ray 

absorption spectroscopy.” Kanan, M. W.; Yano, J.; Surendranath, Y.; Dincă, M.; Yachandra, V. K.; Nocera, D. 
G. J. Am. Chem. Soc. 2010, 132, 13692. 

4  “Single-crystal growth, crystal and electronic structure of NaCoO2.” Takahashi, Y.; Gotoh, Y.; Akimoto, J. J. 
Sol. State Chem. 2003, 172, 22. 

5  “Charge transfer, hybridization and local inhomogeneity effects in NaxCoO2 •yH2O: An x-ray absorption 
spectroscopy study.” Poltavets, V. V.; Croft, M.; Greenblatt, M. Phys. Rev. B 2006, 74, 125103. 

6  “Traditional and microwave-assisted solvothermal synthesis and surface modification of Co7 brucite disk 
clusters and their magnetic properties.” Zhou, Y.-L.; Zeng, M.-H.; Wei, L.-Q.; Li B.-W.; Kurmoo M. Chem. 
Mater. 2010, 22, 4295.  



CoPi.3 All of the cobalt atoms in this molecule are divalent. We have developed a high yield 
synthesis of 1 and have found that the central Co2+ atom can be oxidized to Co3+. This one-
electron oxidized core, 2, can be isolated and also structurally characterized. Our high yield 
synthesis of the cluster in the Co2+ and Co3+ states has allowed us to undertake detailed 
studies of the Co2+|Co3+ self-exchange kinetics, which is a critical factor in the formation of 
CoPi films because self-assembly occurs upon the oxidation of Co2+ to Co3+ in the presence 
of Bi, Pi or MePi. 

We have found that the inner bridging hydroxide ligands provide a pathway for redox-
leveling by PCET. Remarkably, both clusters 1 and 2 have readily interpretable and 
distinctive NMR spectra thus allowing us to examine this PCET process. Using the 
deuterium-labeled ligand (HL*), self-exchange electron transfer between 1* and 2 has been 
examined by time-resolved, variable-temperature NMR spectroscopy. The McKay equation, 
which relates the rate of isotope exchange to the rate of electron transfer,7  

− ln �1 −  
[𝑅𝑒𝑑]𝑡
[𝑅𝑒𝑑]∞

� =  
𝑅𝑒𝑥(𝐶𝑅𝑒𝑑 + 𝐶𝑂𝑥)

𝐶𝑂𝑥 ∙ 𝐶𝑅𝑒𝑑
𝑡 (1) 

has shown us that the Co2+|Co3+ electron transfer for the cobalt residing in the central 
oxidic ligand field of the cluster is many orders of magnitude slower than that of hexa-aqua 
Coaq2+/3+ self-exchange.8 We have concluded that Co2+|Co3+ self-exchange is dependent on 
an inner-sphere mechanism. Since the cluster geometry precludes the inner-sphere 
mechanism in the case of 1 and 2, the slow electron transfer between these molecules 
suggests that the fast electron transfer in the Coaq2+/3+ couple is actually mediated by a 
water-bridging inner-sphere mechanism. Our studies resolve a three decade controversy 
                                                           
7  “Kinetics of exchange reactions.” McKay, H. A. C. Nature 1938, 142, 997. 
8  “Electron-transfer reactions between aqueous cobaltous and cobaltic ions.” Habib, H. S.; Hunt, J. P. J. Am. 

Chem. Soc. 1966, 88, 1668. 

 
Figure 1. (Left) Schematic of cubane structure of PSII–OEC. (Middle) Structure of the CoPi as 
determined from EXAFS (Pi not shown). Co–OEC is the head-to-tail dimer of the cubane of PSII–OEC. 
(Right) CoPi structure rotated by 45° to more clearly show edge sharing octahedra. 



for Co2+|Co3+ self-exchange.9,10 Of pertinence to this program, the work provides insight 
into the participation of Co(II) in the formation and operation of the CoPi catalyst.  

2.2. EPR Studies of Molecular Co-oxo Cubanes as Related to CoPi  

CoPi catalyst films exhibit EPR signals corresponding to populations of both Co(II) and 
Co(IV). Figure 3 shows the EPR spectrum of CoPi under deposition conditions and as 
compared to Co(II) containing species (top panel, left), CoPi under an applied voltage at 
which catalysis occurs (middle panel, left) and a Co4O4 cubane containing cobalt in the +4 
oxidation state (bottom panel, left). The presence of Co(IV) is clearly established at 
potentials that OER catalysis occurs. As the deposition voltage is increased into the region 
where water oxidation prevails (right panel), the population of Co(IV) rises and the 
population of Co(II) decreases. 

Recent studies have taken the EPR of the Co4O4 cubane of Figure 3 one step further. The 
cobalt tetramer has a total electron spin S = ½ and formal cobalt oxidation states III, III, III 
and IV. The Davies ENDOR spectrum in Figure 4 is well-modeled using a single class of 
hyperfine-coupled 59Co nuclei with a modestly strong interaction (principal elements of the 
hyperfine tensor are equal to [–13 –23 80] MHz). Mims 1H ENDOR spectra of the cubane 

                                                           
9  “Kinetics of oxidation of metal complexes by manganese(III) aquo ions in acidic perchlorate media: The 

Mn(H2O)62+–Mn(H2O)63+ electron-exchange rate constant.” Macartney D. H.; Sutin, N. Inorg. Chem. 1985, 
24, 3403. 

10  “Examination of the intrinsic barrier to electron transfer in hexaaquocobalt(III): Evidence for very slow 
outer-sphere self-exchange resulting from contributions of Franck–Condon and electronic terms.” 
Endicott, J. F.; Durham, B.; Kumar, K. Inorg. Chem. 1982, 21, 2437. 

 
Figure 2. (Left) CoPi structure emphasizing cluster core. (Right) A molecular analog of CoPi. The cluster 
core is emphasized and the 2-methoxy[(methylimino)methyl]phenol ligands of the core are gray-scaled. 
The molecular analog has been synthesized, isolated and structurally characterized for the central metal 
of the cluster in both the Co2+ and Co3+ oxidation states, thus allowing for the examination of the 
Co2+ |Co3+ electron transfer kinetics. 



with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on 
the cobalt-bonding partner is significantly reduced from unity. Multifrequency 14N ESEEM 
spectra (acquired at 9.5 and 34.0 GHz) indicate that multiple equivalent 14N nuclei are 
coupled to the electron spin. Cumulatively, these EPR spectroscopic findings indicate that 
the unpaired spin is delocalized almost equally across the cobalt core atoms, a finding 
corroborated by results from DFT calculations. These results suggest that the charge on the 
CoPi catalyst is also highly delocalized. 

2.3. PCET Studies of Cobalt-Oxo Cubane 

EPR studies establish Co(IV) as the oxidation state from which the OER occurs. We thus 
wished to define (i) the PCET kinetics of Co4+ in a cubane environment and (ii) the 
Co3+|Co4+ self-exchange kinetics, which define how the catalytically active “holes” 
propagate from the electrode through an active catalyst film. We have done so by defining 
the kinetics for the reaction cycle shown in Figure 5 for the molecular Co4O4 cubane 
compound, [Co4O4(O2CMe)2-(bpy)4](ClO4)2 (3).11  

Compound 3 is a structural relative of CoPi, as both are able to stabilize Co(III)|Co(IV) 
mixed valency within a cubane-like geometry bridged by µ3-O/OH moieties. The pH 

                                                           
11 “Dimerization of the [Co2III(OH)2] core to the first example of a [Co4IIIO4] cubane: Potential insights into 

photosynthetic water oxidation.” Dimitrou, K.; Folting, W. E.; Streib; Christou, G. J. Am. Chem. Soc. 1993, 
115, 6432. 

 
Figure 3. CW X-band EPR spectra of (left, top) frozen electrolysis solution (▬), Co3(PO4)2 (▪▪▪▪), Co3O4 
(▬ ▬), (left middle) CoPi catalyst films deposited at 1.34 V, and (left bottom) the Co-oxo cubane 
[Co4O4(C5H5N)4-(CH3CO2)4](ClO4), which exhibits an EPR signal for Co(IV) at g = 2.27. Vertical dotted 
line indicates g = 2.27 resonance as compared to the predominant resonance of frozen CoPi at potentials 
at which OER catalysis takes place. T = 5.7 K; Microwave power = 1.02 mW. (right) Potential dependence 
of EPR spectrum from 1.03 V, at which catalysis does not occur to 1.34 V, at which catalysis occurs. 



dependence of the Co(III) to Co(IV) redox potential 
was measured, revealing a pKa of ~3.1 for the 
protonated cube (3-H+). For bidirectional PCET (ET 
and PT not in the same direction) a near-Nernstian 
slope at pH < 3 (Figure 6) is consistent with a one-
electron, one-proton transfer from 3-H+ to the 
oxidized molecule (4). The absence of a kinetic 
isotope effect (KIE) coupled with an inverse 
dependence on H+ activity is ascribed to a PCET 
mechanism that is stepwise with an equilibrium 
proton transfer followed by a rate-limiting electron 
transfer (PTET).12 The kinetics for this bidirectional 
PCET were measured by chemical means using the 
one-electron transfer reagent Ru(bpy)32+ and by 
following the reaction using stopped-flow 
spectroscopy in H2O and D2O under pseudo-first 
order conditions. From this data, a second-order 
rate constant of ~1.3 × 106 M–1 s–1 was derived. The 
lack of a KIE is again consistent with a stepwise 
process.  

The self-exchange (SE) PCET mechanism is a 
unidirectional PCET between 3-H+ and 4,  

3-H+  +  4*  →  4  +  3*-H+ (2) 

Using NMR line-broadening techniques, the kinetics 
for the unidirectional PCET were shown to stand in 
contrast to those of the above bidirectional case. 
The second-order rate constant for reaction (2) was 
1.3 × 104 M–1 s–1 at pH 1, two orders of magnitude 
lower than in the stepwise mechanism. At pH 4, 
where 3 is deprotonated, the rate constant 
increases by a factor of 10, to 3 × 105 M–1 s–1, 
consistent with a simple electron transfer step. A 
KIE of 4.3 is suggestive of a change in mechanism 
from bidirectional PTET to unidirectional concerted 
proton-electron transfer (CPET). We have shown 

                                                           
12 “Concerted proton−electron transfers: Electrochemical and related approaches.” Costentin, C.; Robert, M.; 

Savéant, J.-M. Acc. Chem. Res. 2010, 43, 1019. 

 
Figure 4. ENDOR of oxidized Co4O4 
cubane (blue) taken at the perpendicular 
(top) and parallel (bottom) turning points 
of the EPR spectrum. Simulation of 
spectrum (black). 

 
Figure 5. Square scheme for PCET 
mechanism of Co3+ and Co4+ in a Co-
oxo cubane environment. 

 
Figure 6. Pourbaix diagram of cubane 3. 
Labels on the plot indicate zones of 
thermodynamic stability for 3, 3-H+, and 4. 



that CPET results in order to avoid the high energy barrier of >0.16 V posed by 
intermediate 4-H+. This result provides a framework for understanding the magnitude of 
the energetic penalties that are responsible for PCET mechanism changes in processes 
important for the efficient functioning of CoPi. Moreover, this establishes the mechanism 
for hole propagation through films of the catalyst.  

2.4. Mechanistic Studies of CoPi Based on Molecular Systems and Highly Active 
Catalyst Films 

The molecular studies establish that OER catalysis occurs among a Co(II)-Co(III)-Co(IV) 
cycle and that the pre-catalytic state is Co(IV). With this understanding, detailed 
electrokinetic studies of the mechanism of CoPi were undertaken.  

The measured current density for electrochemical water oxidation is directly proportional 
to the velocity of O2 evolution. Therefore, the determination of the steady-state activation-
controlled current density, i, as a function of various parameters, such as potential, pH and 
electrolyte concentration, enables construction of an electrochemical rate law, from which 
a mechanistic hypothesis may be developed. A key measurement in electrocatalysis is the 
evaluation of the logarithm of i as a function of the applied potential, E, or overpotential, η. 
The slope of the resulting Tafel plot gives insight into the nature of the electrochemical 
steps preceding and involved in the turnover-limiting 
step (TLS) of O2 evolution. We found that the Tafel plots 
(Figure 7) of CoPi films display a slope of 60 mV/decade 
irrespective of film thickness, indicating this indicates 
that the kinetic profile of catalyst films is not influenced 
by barriers to charge and/or mass transport through 
catalyst films. Furthermore, the independence of the 
Tafel slope on rotation rate, when films were 
electrodeposited onto a rotating disk electrode, 
demonstrated that this 60 mV/decade Tafel slope is 
representative of the kinetics of active sites under 
activation-control—the absence of mass transport 
limitations through solution. A 60 mV/decade Tafel 
slope indicates that there exists a one-electron pre-
equilibrium, prior to a chemical turnover limiting step 
(i.e. the TLS does not involve electron transfer away 
from the active site). In addition, the steady-state 
electrode potential decreases by 60 mV per pH unit 
(Figure 7) indicating a one-electron, one-proton PCET 
conversion prior to the TLS. A zeroth reaction order in 
phosphate concentration [Pi] indicated the absence of a 

 

 
Figure 7. (top) Tafel plots V = (Vappl 
– iR), η = (V – E0) of CoPi films 
deposited on FTO by passage of 6 
(▲), 24 (●), and 60 (■) mC cm–2. 
(bottom) pH dependence on 
potential at a constant current 
density of 30 μA cm–2. 



turnover-limiting PT and completed the electrochemical rate law for water oxidation on 
CoPi: 

𝑗 = 𝑘0(𝑎𝐻+)−1 exp �
𝐸𝐹
𝑅𝑇

�  (3) 

With the results of the molecular studies, we determined that PCET pre-equilibrium was a 
Co3+–OH to Co4+–O transformation followed by a TLS of O–O bond formation. The overall 
mechanism of OER catalysis involves a Co(II) to Co(III) to a Co(IV) oxidation cycle. The 
catalytically active state is delivered by a PCET pre-equilibrium shown in Figure 8. Key 
assumptions regarding the fundamental exchange rate of terminal and bridging oxygen 
atoms remain to be addressed in future studies with appropriate molecular models.  

Unlike crystalline extended solids, catalysis is not confined to the exterior surface of Co–
OECs. In Co–OEC, which is composed of molecular units arranged in a porous network, OER 
catalysis occurs throughout the film. With the mechanism and self-exchange kinetics in 
hand, we have been able to construct highly active films of the Co–OECs (CoPi and CoBi).  

Electrodeposition of Co–OECs on three-dimensional open cell Ni foam substrates delivers 
highly active O2 evolving anodes. These anodes exhibit sustained water oxidation at 100 
mA/cm2 at 442 and 363 mV overpotential for films operated in Pi and Bi electrolytes 
respectively. We have also demonstrated that Co–OEC retains water oxidation activity 
when operated at neutral pH in natural water sources derived from the Charles River 
(Cambridge, MA) and Atlantic Ocean (Woods Hole, MA). This is in stark contrast to 
commercial OER catalysts, which exhibit a rapid loss in activity when operated in 
unpurified natural waters.  

2.5. The Artificial Leaf 

Interfacing fuel-forming catalysts with light-harvesting semiconductors affords a pathway 
to direct solar-to-fuels conversion that captures the basic elements of a leaf. In nature, 
photosynthetic organisms like plants convert the energy of sunlight into chemical energy 

 
Figure 8. The OER mechanism of CoPi as determined from electrokinetic, in situ spectroscopic and 
molecular self-exchange kinetics studies. Curved lines denote phosphate, or OHx terminal or bridging 
ligands.  



by splitting water, producing molecular oxygen and hydrogen equivalents.13 After a photon 
is absorbed by chlorophyll and other pigments, its energy is transferred to the reaction 
centre of PSII, where a single electron/hole charge separation occurs. The electron is 
transferred to the adjacent Photosystem I (PSI), where it participates in the reduction 
reaction of NADP into NADPH. The oxidative power of the photo-produced hole in PSII is 
transferred to the OEC where water splitting occurs after the accumulation of four hole 
equivalents.  

An ‘artificial leaf’ can be designed if the one-electron/hole wireless current of a 
semiconductor can be integrated directly with catalysts to perform the four electron-four 
proton catalysis of water splitting. With technology transitions in mind, we settled on using 
Si as a semiconductor because silicon is currently the most widely used material for 
photovoltaic applications. Also, decades of research have resulted in low losses associated 
with bulk and interfacial carrier transport. 

2.5.1. Catalyst Integration to Si PV  

To realize an efficient artificial leaf, it is crucial that photogenerated charge carriers 
migrate freely from the PV to the catalysts. In other words, an Ohmic contact must be 
established between the PV element and the catalytic sites, allowing for charge transport 
with minimum voltage drops.  

We have shown that we can use a Si as a substrate for processing of cobalt metal films from 
which the CoPi can be grown directly. Under illumination, these CoPi-coated photoanodes 
exhibited a 0.35 V reduction in the onset potential for the OER. In addition, we have also 
prepared a composite photoassisted anode by sputtering a 50 nm film of ITO on the p-side 
of the silicon pn-junction followed by annealing (400 °C, N2, 30 min). The ITO layer serves 
to protect the Si from oxidation during operation. An optional p+ layer was incorporated 
between the p-Si and the ITO layer depositing a 1 μm film of silicon-doped (1%) Al on the 
p-side of the junction, followed by rapid thermal annealing in N2 at 900 °C.14 The CoPi 
catalyst was then electrodeposited on the ITO barrier layer. The performance of these ITO-
passivated Si anodes is discussed in the next section. 

2.5.2. Single Junction PEC Cell  

The single junction npp+ cell shown in Figure 9 was prepared. A metal front contact 
(Ti/Pd/Ag, 20/20/100 nm thickness, respectively) was deposited on the n-side of the 
sample to enable PEC measurements and was protected from the solution using a 10 μm 
                                                           
13  “Biological solar energy.” Barber, J. Phil. Trans. Roy. Soc. A 2007, 365, 1007. 
14  “An optimized rapid aluminum back surface field technique for silicon solar cells.” Narasimha, S.; Rohatgi, 

A.; Weeber, A. W. IEEE T. Electron Dev. 1999, 46, 1363. 



layer of photoresist. The CoPi film was 
electrodeposited onto the ITO layer using our well-
established method (see above). 

Figure 10 shows a comparison of the CV curves of 
npSi-ITO-Co–OEC and npp+Si-ITO-Co–OEC immersed in 
a 0.1 M KPi electrolyte at pH 7. Under these conditions, 
the thermodynamic potential for water oxidation is 
0.82 V relative to the formal normal hydrogen 
electrode (NHE). When applying the potential through 
the ITO thin film in the dark (blue traces in Figure 10), 
the voltammograms indicate that overpotentials in 
excess of 0.4 V are required to attain current densities 
on the order of 1 mA/cm2. This is in agreement with 
the activity profile for CoPi on ITO or FTO electrodes. 
When applying the potential through the metal 
contacts, such that current must flow through the PV 
component, the observed dark currents are much 
lower (black traces in Figure 10).  

When illuminating the structure from the n-side with 
100 mW/cm2 of AM 1.5 light, the potential onset for 
water oxidation is decreased significantly for both the 
npSi-ITO-Co–OEC and the npp+Si-ITO-Co–OEC samples 
(green lines in Figure 10). Noting that this single 
junction cell generates 0.57 V, we see that the onset of 
the cell under illumination requires 0.52 V less applied 
potential to induce the OER, indicating that the 
majority of the photo-voltage generated by the solar 
cell is utilized to drive the OER. The npp+-Si single 
junction displays improved performance because the 
space charge region in the p+ layer is thin enough to 
act as a tunneling layer. As a result, the p+-Si/ITO 
interface behaves as an Ohmic contact for hole 
transport.  

Figure 10 highlights that a detailed understanding of the PV-catalyst interfaces is essential 
for realizing efficient artificial leaves. Current work seeks to optimize the various elements 
in the leaf, focusing on the Ohmic nature of the contact, chemical stability of the passivating 
layer and OER and HER catalysts activity. 

 
Figure 9. Schematic of a CoPi 
functionalized npp+-silicon single-
junction PEC cell. 

 
Figure 10. CV curves of Si-ITO-Co–
OEC samples (top) without and 
(bottom) with a p+-layer. Samples 
were immersed in a 0.1 M KPi 
electrolyte in dark (black line) and 
illuminated with a Xe lamp (green 
line, intensity ~100 mW/cm2). The 
powder blue curves correspond to the 
dark CV curve when the potential was 
applied through the ITO film at the 
back contact. 



2.5.3. Triple Junction PEC Cell: The Artificial Leaf  

Stand-alone operation of the cell with no external applied potential from an electrical 
power source (i.e., unassisted) was performed by interfacing CoPi with a triple junction 
amorphous Si (3jn-a-Si) solar cell. The architecture is shown in Figure 11. The CoPi|3jn-a-Si 
photoanode drives the OER for O2 production, and a new NiMoZn cathode drives the HER 
for H2 production. The 3jn-a-Si produces 8 mA cm–2 of current at 1.8 V. When the wireless 
CoPi|3jn-a-Si|NiMoZn wafer is immersed in an open container of electrolyte (1 M 
potassium borate, pH 9.2) and illuminated with 1 sun (AM 1.5 simulated sunlight), O2 
bubbles evolve from the anode at the front face and bubbles of H2 evolve from the cathode 
at the back of the wireless cell. The overall solar-to-fuels efficiency (SFE) can be as high as 
4.7% when Ohmic losses are minimized. Noting that the light-to-electricity efficiency of 
3jn-a-Si is φ(PV) = 7.7%, 

 SFE (%)  =  φ(PV) • φ(WS) (4) 

yields an overall efficiency for water splitting of φ(WS) = 60%. This value compares well 
with cell efficiencies based on 3jn-a-Si PVs in which the a-Si is isolated from the electrolyte 
(SFE = 6% for φ(PV) = 10%)15- 17 and for higher-efficiency systems using expensive PV 

                                                           
15  “High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production.” 

Khaselev, O.; Bansal, A.; Turner, J. A. Int. J. Hyd. Energy 2001, 26, 127. 

 
Figure 11. The artificial leaf. The p-side of 3jn-a-Si solar cell is coated with an ITO layer and CoPi. The n-
side is coated with a new HER catalyst developed in our labs. The overall 3jn-a-Si under AM 1.5 
illumination, water splitting is achieved. 



materials (SFE = 18% for φ(PV) = 28%).15,18,19 Based on φ(WS), higher overall cell 
efficiencies (>10%) may be readily achieved through the use of more efficient PVs.  

The integration of earth-abundant water splitting catalysts with photovoltaic silicon cells 
captures the functional elements of energy capture and storage by a leaf. The ability to 
drive water splitting directly without the use of wires under a simply engineered 
configuration opens several new avenues of exploration (vide infra). 

2.6. A Nickel-Based OEC 

In the PV-PEC configuration, the photovoltage generation and current rectification occur at 
the np-junction buried within the silicon solar cell. Thus, it is the intersection of the i-V 
curve of the PV component with the i-V curve of the OER catalyst that dictates the 
(photo)potential and (photo)current utilized for water splitting.20 This is shown in Figure 
12. The red curve is the PV i-V curve of the 3jn-a-Si. The blue curve describes the 
electrochemical load of the PV-PEC. This curve is generated based on known metrics of the 
OEC (in this case CoPi) and HER catalyst Tafel behavior, and on estimates for the solution 
resistance. The SFE is nearly optimal with the 
electrochemical activity intercepting the PV curve 
near its maximum power point. However, as the PV 
curve is moved closer to the thermodynamic 
potential for water splitting (e.g. when using a PV 
unit with a lower Voc, see red dashed curve), the SFE 
drops dramatically when using CoPi (Tafel slope = 60 
mV/decade). However, the SFE is recovered if the 
Tafel slope of the OEC decreases from 60 mV to 30 
mV per decade, even if both have the same exchange 
current densities (green curve). We therefore set out 
to develop a catalyst with such a Tafel slope. We 
reasoned that Ni would be more basic, and hence 
shift the pre-equilibrium from 1e– (which gives a 60 
mV Tafel) to 2e– (which gives a 30 mV Tafel slope). 
                                                                                                                                                                                           
16  “High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon 
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Figure 12. i-V curve of PV overlaid with 
Tafel curves of 30 and 60 mV per 
decade. The gray bar shows the voltage 
range near the thermo-dynamic potential 
of water splitting. 



Our efforts to prepare Ni-based OECs were rewarded 
with the discovery of a NiBi catalyst. Cyclic 
voltammograms (CVs) of borate-buffered Ni2+, pH 
9.2 electrolytes displayed features consistent with 
the growth of a surface adsorbed species, along with 
a sharp catalytic wave. Sustained electrolysis of such 
Ni2+ electrolytes at fixed potential results in the 
progressive increase in current density over time, as 
a dark brown film becomes visible on transparent 
electrode substrates and grows in thickness. Films 
with sub-nanometer to micron thickness are readily 
accessible, by simply varying the deposition time. 

The pH dependence of the redox waves (Figure 13) 
of NiBi films indicate a 2e–, 3H+ PCET transformation 
between oxidized and reduced states, as has been 
proposed for the dimerization of Ir(IV) hydro-hydroxo species to form iridium oxide.21,22 
As such, of fundamental interest to us is the electron transfer kinetics of the Ni2+ to Ni3+ 
transformation that engenders film deposition, and also leads to this complex coupled 
multi-electron, multi-proton transition in deposited films. We find that ultrathin NiBi films 
(<10 nm), for which internal electron transfer barriers are negligible, do indeed display 
Tafel slopes of 30 mV/decade. Future studies will be undertaken on molecular Ni 
compounds to shed light the proton-electron transfer dynamics of film deposition and O2 
evolution. 

                                                           
21  “A voltammetric investigation of the charge storage reactions of hydrous iridium oxide layers.” Burke, L. 
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Figure 13. CVs (50mV/s) of a NiBi 
catalyst film at pH values of 7.8, 8.3, 
8.7, 8.9, 9.2, 9.4, 9.7, and 10.0 (from 
left to right). The inset shows a linear fit 
of the peak potential with pH, with a 
slope of –96 mV per pH unit. 
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